RESERVE: Resilient Hybrid Time-sensitive Networks
Team
Telecommunication Networks (TKN), TU Berlin
-
Falko Dressler
Falko Dressler is full professor and Chair for Telecommunication Networks at the School of Electrical Engineering and Computer Science, TU Berlin. He received his M.Sc. and Ph.D. degrees from the Dept. of Computer Science, University of Erlangen in 1998 and 2003, respectively. Dr. Dressler is an IEEE Fellow as well as an ACM Distinguished Member. He is a member of the German National Academy of Science and Engineering (acatech). He has been serving on the IEEE COMSOC Conference Council and the ACM SIGMOBILE Executive Committee. His research objectives include adaptive wireless networking (sub-6GHz, mmWave, visible light, molecular communication) and wireless-based sensing with applications in ad hoc and sensor networks, the Internet of Things, and Cyber-Physical Systems. -
Doğanalp Ergenç
Dr. Doğanalp Ergenç is a postdoctoral researcher in the Telecommunication Networks group at the Technical University of Berlin. He received his PhD from the University of Hamburg in 2023. He has published in flagship conferences such as GLOBECOM, ICC, INFOCOM, NOMS, and LCN, and has served on the TPC of venues including ICCCN, GLOBECOM, ICNP, and ETFA. He currently acts as PI in multiple research projects, with a focus on time-sensitive wired and wireless networking.
Computer Networks (NET), Universität Hamburg
- Mathias Fischer
Mathias is professor for computer networks at the University Hamburg since December 2021. Before that, he was an assistant professor at Universität Hamburg (2016-2021), the University Münster (2015-16), a Postdoc at the International Computer Science Institute (ICSI) / UC Berkeley (2014-15), and Postdoc at the Center for Advanced Security Research Darmstadt (CASED) / TU Darmstadt from (2012-14). His research interests encompass IT and network security, resilient distributed systems, network monitoring, and intrusion detection. Mathias received a PhD in 2012 and a diploma in computer science in 2008, both from TU Ilmenau.
Abstract
[EN] Mission-critical systems, such as in industrial automation, rely on highly resilient, low-latency communication networks. However, current networking solutions—such as time-sensitive networking (TSN) for wired communication and WiFi 7 or 5G for wireless—lack a unified, resilience-centric approach that can withstand impaired link conditions, failures, and cyber-attacks. The RESERVE project aims to address this critical gap by developing Resilient Hybrid Time-Sensitive Networks that seamlessly integrate wired and wireless networking to enhance the resilience to changes, faults, and attacks while maintaining strict time-sensitive communication guarantees. Along these lines, the following resilience challenges need to be tackled: First, for ensuring reliable end-to-end quality of service (QoS), it is necessary to achieve seamless hybrid integration while maintaining real-time, mixed-criticality traffic performance across wired and wireless links. Second, in order to be able to adapt to dynamic network conditions, networks need to be enabled to respond to failures, interference, and mobility without degrading service reliability. Third, for scalable and adaptive orchestration, we need to investigate centralized, decentralized, and distributed control models to ensure resilience in real-time network (re-)configuration. Fourth, for mitigating security threats, we need to develop robust defense mechanisms against denial of service (DoS), jamming, and time synchronization attacks to maintain continuous system operation. The RESERVE research objectives include: (1) Developing fault-tolerant hybrid links: Introducing multi-connectivity and redundancy mechanisms to sustain service continuity despite link failures or environmental disruptions. (2) Enhancing resource resilience: Implementing hybrid network slicing, dynamic reservations, and adaptive scheduling to optimize resource utilization under changing conditions. (3) Strengthening traffic and mobility management: Creating self-adaptive orchestration techniques that minimize disruption and ensure service continuity during failures or mobility events. (4) Securing Hybrid Networks: Designing adaptive countermeasures to enhance the resilience against cyber threats. RESERVE will leverage analytical modeling, AI-driven network optimization, real-world testbeds, and large-scale simulations to develop and validate resilience-enhancing techniques for hybrid networks. By integrating the latest wired (TSN) and wireless (WiFi 7, 5G/6G) technologies, this project will set new benchmarks for fault-tolerant, adaptive, and attack-resilient networking in mission-critical environments.
[DE] Mission-Critical Systems, wie z.B. in der Industrieautomatisierung, sind auf hochgradig resiliente, latenzarme Kommunikationsnetzwerke angewiesen. Aktuelle Netzwerklösungen, wie Time-Sensistive Networking (TSN) für kabelgebundene Kommunikation und WiFi 7 oder 5G für drahtlose Kommunikation, bieten jedoch keinen einheitlichen, resilienzorientierten Ansatz, der gegen Ausfälle, Cyber-Bedrohungen und dynamische Netzwerkbedingungen gewappnet ist. Das RESERVE-Projekt zielt darauf ab, diese kritische Lücke zu schließen, indem es resiliente hybride time-sensitive Networks entwickelt, die verkabelte und drahtlose Bereiche nahtlos integrieren, um Fehlertoleranz, Anpassungsfähigkeit und Angriffsresistenz zu verbessern, während strenge zeitkritische Kommunikationsgarantien aufrechterhalten werden. In diesem Zusammenhang müssen folgende Resilienzherausforderungen angegangen werden: Erstens ist es notwendig, eine nahtlose hybride Integration zu erreichen, um zuverlässig und Ende-zu-Ende QoS sicherzustellen ohne die Leistung von Echtzeit- und gemischt-kritischem Verkehr über verkabelte und drahtlose Verbindungen zu beeinträchtigen. Zweitens müssen Netzwerke in der Lage sein, sich an dynamische Netzwerkbedingungen anzupassen, indem sie auf Ausfälle, Störungen und Mobilität reagieren, ohne die Dienstzuverlässigkeit zu beeinträchtigen. Drittens ist es erforderlich, zentrale, dezentrale und verteilte Kontrollmodelle zu untersuchen, um die Resilienz bei der Echtzeit-Netzwerk-Neukonfiguration sicherzustellen. Viertens müssen robuste Abwehrmechanismen gegen Denial-of-Service (DoS), Jamming-Angriffe und Angriffe auf die Zeitsynchronisation entwickelt werden, um einen kontinuierlichen Systembetrieb aufrechtzuerhalten. Die Forschungsziele von RESERVE umfassen: (1) Entwicklung von fehlertoleranten hybriden Links: Einführung von Multi-Konnektivität und Redundanzmechanismen, um die Verfügbarkeit der Dienste trotz Verbindungsfehler oder Umwelteinflüsse aufrechtzuerhalten. (2) Verbesserung der Resourcen-Resilience: Implementierung hybrider Netzwerk-Slicing, dynamischer Reservierungen und adaptiver Planung zur Optimierung der Ressourcennutzung unter wechselnden Bedingungen. (3) Stärkung des Traffic und Mobility Managements: Entwicklung selbstadaptiver Orchestrierungstechniken, die Störungen minimieren und die Dienstkontinuität während Ausfällen oder Mobilitätsereignissen sicherstellen. (4) Sicherung hybrider Netzwerke: Gestaltung adaptiver Gegenmaßnahmen zur Verbesserung der Resilienz gegen Cyber-Bedrohungen. RESERVE wird analytische Modellierung, AI-basierte Netzwerkoptimierung, reale Testumgebungen und skalierbare Simulationen nutzen, um Resilienz-erhöhende Techniken für hybride Netzwerke zu entwickeln und zu validieren. Durch die Integration der neuesten kabelgebundenen (TSN) und drahtlosen (WiFi 7, 5G/6G) Technologien wird dieses Projekt neue Benchmarks für fehlertolerante, adaptive und widerstandsfähige Netzwerke in mission-critical Umgebungen setzen.