Automated Resilience Verification and Resilience by Design

(Automatisierte Verifikation von Resilienz und Resilience by Design)

Team

Lehrstuhl für Theoretische Informationstechnik, TU Munich

  • Holger Boche Holger Boche received the Dipl.-Ing. degree in electrical engineering, Graduate degree in mathematics, and the Dr.-Ing. degree in electrical engineering from the Technische Universität Dresden, Germany, in 1990, 1992, and 1994, respectively. In 1998, he received the Dr. rer. nat. degree in pure mathematics from the Technische Universität Berlin, Germany. From 2002 to 2010, he was Full Professor in mobile communication networks with the Institute for Communications Systems, Technische Universität Berlin, Germany. In 2004, he became the Director of the Fraunhofer Institute for Telecommunications (HHI). He is currently Full Professor at the Institute of Theoretical Information Technology, Technische Universität München, Germany, which he joined in October 2010. Since 2014, Prof. Boche has been a member and Honorary Fellow of the TUM Institute for Advanced Study, Munich, Germany, and since 2018, a Founding Director of the Center for Quantum Engineering, Technische Universität München, Germany. Since 2021, he has been leading jointly with Frank Fitzek the BMBF Research Hub 6G-life. He was elected member of the German Academy of Sciences (Leopoldina) in 2008 and to the Berlin Brandenburg Academy of Sciences and Humanities in 2009. He is a recipient of the Research Award “Technische Kommunikation” from the Alcatel SEL Foundation in October 2003, the “Innovation Award” from the Vodafone Foundation in June 2006, and the Gottfried Wilhelm Leibniz Prize from the Deutsche Forschungsgemeinschaft (German Research Foundation) in 2008. He was a co-recipient of the 2006 IEEE Signal Processing Society Best Paper Award and a recipient of the 2007 IEEE Signal Processing Society Best Paper Award. He was General Chair of the Symposium on Information Theoretic Approaches to Security and Privacy at IEEE GlobalSIP 2016.

Lehrstuhl für Informationstheorie und Maschinelles Lernen, TU Dresden

  • Rafael Schaefer Rafael F. Schaefer is a Professor and head of the Chair of Information Theory and Machine Learning at Technische Universität Dresden. He received the Dipl.-Ing. degree in electrical engineering and computer science from the Technische Universität Berlin, Germany, in 2007, and the Dr.-Ing. degree in electrical engineering from the Technische Universität München, Germany, in 2012. From 2013 to 2015, he was a Post-Doctoral Research Fellow with Princeton University. From 2015 to 2020, he was an Assistant Professor with the Technische Universität Berlin, Germany, and from 2021 to 2022 a Professor with the Universität Siegen, Germany. Among his publications is the recent book Information Theoretic Security and Privacy of Information Systems (Cambridge University Press, 2017). He was a recipient of the VDE Johann-Philipp-Reis Award in 2013. He received the best paper award of the German Information Technology Society (ITG-Preis) in 2016. He is currently an Associate Editor of the IEEE Transactions on Information Forensics and Security and of the IEEE Transactions on Communications. He is a Member of the IEEE Information Forensics and Security Technical Committee.

Abstract

[EN] Automated verification of resilience and trustworthiness as well as resilience by design have been identified as key challenges for the sixth generation (6G) of mobile networks and its variety of envisioned features. In this project, these issues are addressed by developing information and coding theoretic foundations for communication under jamming attacks, particularly for practically relevant channel models. Automated verification is then addressed from a fundamental, algorithmic point of view. For this purpose, the concept of Turing machines is used which provides the fundamental performance limits of today’s digital hardware platforms. Neuromorphic computing has an enormous potential to overcome the limitations of today’s digital hardware and, accordingly, the issues of automated verification of resilience and trustworthiness as well as resilience by design are also studied for such powerful computing models. This is motivated by the considerable progress in the hardware design for neuromorphic computing that has been achieved recently. Finally, design rules and insights for resilience by design are developed. For this, additional coordination resources available at the users within the communication system are considered and it is studied how these can be exploited to robustify the system making inherently resilient directly at the physical layer.

[DE] Die automatisierte Verifikation von Resilienz und Vertrauenswürdigkeit sowie Resilience by Design wurden als zentrale Herausforderungen für die 6. Generation (6G) von Mobilfunksystemen identifiziert. In diesem Projekt werden diese Fragestellungen adressiert, indem informations- und codierungstheoretische Grundlagen für die Kommunikation unter feindlichen Jamming-Angriffen entwickelt werden; insbesondere für praxisrelevante Kanalmodelle. Die automatisierte Verifikation wird dann aus fundamentaler, algorithmischer Sicht analysiert. Dazu wird das Konzept der Turing-Maschinen verwendet, das die grundlegenden Leistungsgrenzen heutiger digitaler Hardware-Plattformen aufzeigt. Neuromorphic Computing hat ein enormes Potenzial, die Grenzen heutiger digitaler Hardware zu überwinden, und dementsprechend werden auch die Fragen der automatisierten Verifikation von Resilienz und Vertrauenswürdigkeit sowie Resilience by Design für solche leistungsstarken Rechenmodelle untersucht. Dies wird insbesondere durch die erheblichen Fortschritte im Hardwaredesign für Neuromorphic Computing motiviert, die in letzter Zeit erzielt wurden. Abschließend werden Designregeln und Einsichten für Resilience by Design entwickelt. Dazu werden zusätzliche Koordinationsressourcen bei den Benutzern innerhalb des Kommunikationssystems angenommen und untersucht, wie diese genutzt werden können, um das System direkt auf der physikalischen Schicht robust und resilient zu entwerfen.